Actuators

Reversible electromotoric actuators for air dampers and valves of oil or gas burners of small to medium capacity.

The SQN7... and this Data Sheet are intended for use by OEMs which integrate the actuators in their products!

Use and features

- The SQN7... actuators are designed for driving gas or air dampers of oil or gas burners of small to medium capacity, for load-dependent control of the fuel and combustion air volume:
 - In connection with P-PI or PID controllers, such as the RWF40...
 - Directly via the different types of burner controls, such as LFL..., LME..., LMG..., LMO..., LOA...
 - In connection with 1- or 2-wire control or 3-position controllers

- All types of actuators feature:
 - Impact-proof and heat-resistant plastic housings
 - Screw terminals for the electrical connections
 - Maintenance-free gear train, which can be disengaged
 - Internal position indication
 - Easy-to-adjust end and auxiliary switches for adjusting the switching points
 - Integrated electronic circuits

- Holding torque:
 - SQN70.../SQN71.../SQN75... 0.7...1.3 Nm
 - SQN74... 0.7 Nm

- Running time:
 - SQN70.../SQN71.../SQN75... 4...30 s
 - SQN74... 4 s

- Direction of rotation:
 - SQN70.../SQN74... counterclockwise
 - SQN71.../SQN75... clockwise

- SQN74.../SQN75... - Fixing holes and cable entries
 - Equivalent to actuators of the same category made by Conectron and Berger
Warning notes

To avoid injury to persons, damage to property or the environment, the following warning notes must be observed!

Do not interfere with or modify the actuators!

- All activities (mounting, installation and service work, etc.) must be performed by qualified staff
- Before making any wiring changes in the connection area, completely isolate the plant from mains supply (all-polar disconnection). Ensure that the plant cannot be inadvertently switched on again and that it is indeed dead. If not observed, there is a risk of electric shock hazard
- Ensure protection against electric shock hazard by providing adequate protection for the connection terminals and by securing the housing cover
- Each time work has been carried out (mounting, installation, service work, etc.), check to ensure that wiring is in an orderly state
- Fall or shock can adversely affect the safety functions. Such actuators must not be put into operation, even if they do not exhibit any damage

Mounting notes

- Ensure that the relevant national safety regulations are complied with

Standards and certificates

Applied directives:
- Low-voltage directive 2014/35/EC
- Electromagnetic compatibility EMC (immunity) 2014/30/EC

Compliance with the regulations of the applied directives is verified by the adherence to the following standards / regulations:
- Automatic electrical controls for household and similar use Part 1: General requirements
 DIN EN 60730-1
- Automatic electrical controls for household and similar use Part 2-14: Particular requirements for electric actuators
 DIN EN 60730-2-14

The relevant valid edition of the standards can be found in the declaration of conformity!

EAC Conformity mark (Eurasian Conformity mark)

ISO 9001:2008
ISO 14001:2004
OHSAS 18001:2007

Disposal notes

The actuators contain electrical and electronic components and must not be disposed of together with household waste. Local and currently valid legislation must be observed.
Mechanical design

Housing
- Made of impact-proof and heat-resistant plastic
- The housing accommodates:
 - The reversible synchronous motor with gear train, which can be **disengaged**
 - The camshaft of the control section
 - The relays, depending on the type of actuator
 - The switches, connected to the terminals via the printed circuit board

 Color:
 - SQN70.../SQN71...: Gear train housing dark-grey, cover light-grey
 - SQN74.../SQN75...: Gear train housing black, cover black

Drive motor
- Reversible and locking-proof synchronous motor

Coupling
- Drive shaft can be manually disengaged from the gear train and motor (by pressing pin K)
- Automatic reengagement

Adjustment of switching points
- By means of adjustable cams
 - Scales beside the cams indicate the angle of the switching point
 - Assignment of cams to the end and auxiliary switches is color-coded (see Connection diagrams)
 - Some of the cam feature fine adjustment; they can be adjusted with a standard screwdriver
 - The other cams can be adjusted manually or with the enclosed hook-spanner or a similar tool

Position indication
- Internally: Scale at the beginning of the camshaft on the gear train side

Electrical connections
- See Technical data

Gear train
- Maintenance-free

Drive shaft
- Made of black-finished steel
- Ready fitted to the front of the gear train
- Different versions available

Mounting and fixing
- Front of the gear train is used as the mounting surface
- Actuator is secured via through-holes

Special versions for fitting potentiometer

Fitting a potentiometer
Certain types of actuators are supplied ready prepared for fitting a potentiometer. These actuators differ from the basic type **only in that the cover is higher**. They are prepared for housing the potentiometer. Accessories are not required. With these types of actuators, the third digit after the dot in the actuator's type reference is an «8».

Example:
SQN7x.xx8Axx → version for fitting a potentiometer, mounted higher cover AGA34

With the other types of actuators which are suited for fitting a potentiometer, the higher cover **AGA34** must be ordered (see Ordering).

The required type of potentiometer is to be ordered as a separate item (see Ordering).
Type summary (other types of actuators available on request)

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Drive shaft ¹)</th>
<th>Running time ²) for 90° ³)</th>
<th>Nominal torque (max.) ⁴)</th>
<th>Holding torque ⁵)</th>
<th>AS ⁶)</th>
<th>Relay ⁷)</th>
<th>Pot. ⁸)</th>
<th>Length of housing ⁹)</th>
<th>Types for mains voltage/ mains frequency</th>
<th>SQN7... replaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC 230 V ⁴) +10% -15% 50...60 Hz</td>
<td>AC 115 V ⁵) +10% -15% 50...60 Hz</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1.5</td>
<td>0.7</td>
<td>2</td>
<td></td>
<td>2</td>
<td>---</td>
<td>117 SQN70.224A20</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1.5</td>
<td>0.7</td>
<td>2</td>
<td></td>
<td>3</td>
<td>---</td>
<td>117 SQN70.244A20</td>
<td>SQN30.121A2700</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1.5</td>
<td>0.7</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>---</td>
<td>117 SQN70.254A20</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>4</td>
<td>1.5</td>
<td>0.7</td>
<td>2</td>
<td></td>
<td>---</td>
<td>10) 80</td>
<td>80 SQN70.264A20</td>
<td>SQN30.101A2700</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>4</td>
<td>1.5</td>
<td>0.7</td>
<td>2</td>
<td></td>
<td>1</td>
<td>---</td>
<td>117 SQN70.294A20</td>
<td>SQN30.111A2700</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>1.5</td>
<td>0.7</td>
<td>2</td>
<td></td>
<td>2</td>
<td>---</td>
<td>117 SQN70.324A20</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>12</td>
<td>2.5</td>
<td>1.2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>117 SQN70.424A20</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>12</td>
<td>2.5</td>
<td>1.2</td>
<td>2</td>
<td></td>
<td>3</td>
<td>---</td>
<td>117 SQN70.454A20</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>12</td>
<td>2.5</td>
<td>1.2</td>
<td>2</td>
<td></td>
<td>---</td>
<td>10) 80</td>
<td>80 SQN70.464A20</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>12</td>
<td>2.5</td>
<td>1.2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>---</td>
<td>117 SQN70.464A23</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>2</td>
<td></td>
<td>2</td>
<td>---</td>
<td>117 SQN70.624A20</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>2</td>
<td></td>
<td>---</td>
<td>10) 80</td>
<td>80 SQN70.664A20</td>
<td>SQN30.401A2700</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>2</td>
<td></td>
<td>---</td>
<td>10) 80</td>
<td>80 SQN70.664A23</td>
<td>SQN30.401A2730</td>
</tr>
</tbody>
</table>

Actuators SQN70.../counterclockwise rotation ⁸)

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Drive shaft ¹)</th>
<th>Running time ²) for 90° ³)</th>
<th>Nominal torque (max.) ⁴)</th>
<th>Holding torque ⁵)</th>
<th>AS ⁶)</th>
<th>Relay ⁷)</th>
<th>Pot. ⁸)</th>
<th>Length of housing ⁹)</th>
<th>Types for mains voltage/ mains frequency</th>
<th>SQN7... replaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC 230 V ⁴) +10% -15% 50...60 Hz</td>
<td>AC 115 V ⁵) +10% -15% 50...60 Hz</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>1</td>
<td>---</td>
<td>10) 80</td>
<td>---</td>
<td>80 SQN70.603R10</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>1</td>
<td>---</td>
<td>10) 80</td>
<td>---</td>
<td>80 SQN70.603R19</td>
<td>---</td>
</tr>
</tbody>
</table>

Actuators SQN71.../clockwise rotation ⁸)

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Drive shaft ¹)</th>
<th>Running time ²) for 90° ³)</th>
<th>Nominal torque (max.) ⁴)</th>
<th>Holding torque ⁵)</th>
<th>AS ⁶)</th>
<th>Relay ⁷)</th>
<th>Pot. ⁸)</th>
<th>Length of housing ⁹)</th>
<th>Types for mains voltage/ mains frequency</th>
<th>SQN7... replaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC 230 V ⁴) +10% -15% 50...60 Hz</td>
<td>AC 115 V ⁵) +10% -15% 50...60 Hz</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1.5</td>
<td>0.7</td>
<td>2</td>
<td></td>
<td>2</td>
<td>---</td>
<td>117 SQN71.244A20</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>4</td>
<td>1.5</td>
<td>0.7</td>
<td>2</td>
<td></td>
<td>---</td>
<td>10) 80</td>
<td>80 SQN71.264A20</td>
<td>SQN31.101A2700</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>12</td>
<td>2.5</td>
<td>1.2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>---</td>
<td>117 SQN71.424A20</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>12</td>
<td>2.5</td>
<td>1.2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>---</td>
<td>117 SQN71.444A20</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>12</td>
<td>2.5</td>
<td>1.2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>---</td>
<td>117 SQN71.464A21</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>2</td>
<td></td>
<td>2</td>
<td>---</td>
<td>117 SQN71.624A23</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>2</td>
<td></td>
<td>---</td>
<td>10) 80</td>
<td>80 SQN71.664A20 SQN71.664A10 SQN31.401A2700</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>2</td>
<td>---</td>
<td>9) 117</td>
<td>80 SQN71.669A23</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>2</td>
<td></td>
<td>1</td>
<td>---</td>
<td>117 SQN71.694A20</td>
<td>---</td>
</tr>
</tbody>
</table>

Actuators SQN71.../clockwise rotation ⁸)

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Drive shaft ¹)</th>
<th>Running time ²) for 90° ³)</th>
<th>Nominal torque (max.) ⁴)</th>
<th>Holding torque ⁵)</th>
<th>AS ⁶)</th>
<th>Relay ⁷)</th>
<th>Pot. ⁸)</th>
<th>Length of housing ⁹)</th>
<th>Types for mains voltage/ mains frequency</th>
<th>SQN7... replaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC 230 V ⁴) +10% -15% 50...60 Hz</td>
<td>AC 115 V ⁵) +10% -15% 50...60 Hz</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>12</td>
<td>2.5</td>
<td>1.2</td>
<td>1</td>
<td>---</td>
<td>10) 80</td>
<td>---</td>
<td>80 SQN71.403R19</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>1</td>
<td>---</td>
<td>10) 80</td>
<td>---</td>
<td>80 SQN71.603R10</td>
<td>SQN71.603R10</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>1</td>
<td>---</td>
<td>10) 80</td>
<td>---</td>
<td>80 SQN71.603R19</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>1</td>
<td>---</td>
<td>9) 84</td>
<td>84 SQN71.608R10</td>
<td>SQN71.608R10</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>1.3</td>
<td>1</td>
<td>---</td>
<td>9) 84</td>
<td>84 SQN71.608R20</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

The UL-registered types of actuators
- also meet CE requirements
- are of the same basic design as the equivalent standard types

The only difference between the standard versions and the UL-registered versions is the use of other materials, especially plastics. In addition, the UL-registered versions are supplied complete with an adapter for use in the U.S. and Canada (see Dimensions).
Type summary / cont’d (other types of actuators available on request)

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Drive shaft¹)</th>
<th>Running time²) for 90°</th>
<th>Nominal torque ³) (max.) Nm</th>
<th>Holding torque ⁴) Nm</th>
<th>AS ⁵)</th>
<th>Relay ⁶)</th>
<th>Pot. ⁷)</th>
<th>Length of housing ⁸)</th>
<th>Types for mains voltage/ mains frequency</th>
<th>SQN7... replaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuators SQN74.../counterclockwise rotation⁹)</td>
<td></td>
</tr>
<tr>
<td>5 1 4 1,5 0,7 4 3 9) 115</td>
<td>SQN74.254A21</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 1 4 1,5 0,7 2 1 9) 115</td>
<td>SQN74.294A21</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actuators SQN75.../clockwise rotation⁹)</td>
<td></td>
</tr>
<tr>
<td>2 1 4 1,5 0,7 2 2 --- 115</td>
<td>SQN75.224A21</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 6 4 1,5 0,7 4 2 --- 115</td>
<td>SQN75.224A26</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 1 4 1,5 0,7 2 3 --- 115</td>
<td>SQN75.244A21</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 6 4 1,5 0,7 2 3 --- 115</td>
<td>SQN75.244A26</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 1 4 1,5 0,7 2 1 9) 115</td>
<td>SQN75.294A21</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 1 4 1,5 0,7 4 1 9) 115</td>
<td>SQN75.294A26</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 1 12 2,5 1,2 4 2 --- 115</td>
<td>SQN75.4F6A21</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1 12 2,5 1,2 2 2 --- 115</td>
<td>SQN75.424A21</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 6 12 2,5 1,2 4 2 --- 115</td>
<td>SQN75.494A21</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 6 30 2,5 1,3 4 --- 9) 115</td>
<td>SQN75.664A26</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 1 30 2,5 1,3 2 1 9) 115</td>
<td>SQN75.694A21</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend

¹) See Dimensions

²) At 60 Hz, running times are about 20% shorter

³) AC 115 V +10%/-15% possible, but in the case of undervoltage, torque is reduced by about 20%

⁴) AC 230 V +10%/-15% possible, but in the case of undervoltage, torque is reduced by about 20%

⁵) On request

⁶) Under nominal conditions; under extreme conditions (e.g. +60 °C, AC 230 V –15%) approx. –25%

⁷) Auxiliary switches (in addition to the 2 end switches)

⁸) When facing the drive shaft and when control voltage is supplied to end switch I

⁹) Suited for direct fitting of potentiometer (see Fitting a potentiometer)

10) Suited for fitting potentiometer. Cover AGA34 to be ordered as a separate item

Ordering

<table>
<thead>
<tr>
<th>Actuator</th>
<th>see Type reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentiometer ASZ...</td>
<td>see Data Sheet N7921</td>
</tr>
<tr>
<td>see Mounting Instruction M7921</td>
<td></td>
</tr>
<tr>
<td>Mounting kit</td>
<td>AGA70.3</td>
</tr>
<tr>
<td>- For mounting the SQN70.../SQN71... in place of the SQN3...</td>
<td></td>
</tr>
<tr>
<td>- Fitted to the SQN70.../SQN71... with a self-tapping screw (included as standard)</td>
<td></td>
</tr>
</tbody>
</table>

| Cover | AGA34 |
| - For SQN70.../SQN71... backfitting with potentiometer ASZxx.3x |
Technical data

General actuator data

| **Actuator** | **Mains voltage** | AC 230 V –15% +10%
AC 115 V –15% +10% |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains frequency</td>
<td>50...60 Hz ±6%</td>
<td></td>
</tr>
<tr>
<td>Drive motor</td>
<td>Synchronous motor</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>6 VA</td>
<td></td>
</tr>
<tr>
<td>Angular adjustment</td>
<td>Max. 160°, scale range 0...130°</td>
<td></td>
</tr>
<tr>
<td>Mounting position</td>
<td>Optional</td>
<td></td>
</tr>
</tbody>
</table>
| **Degree of protection** | - All types
- SQN74.../SQN75...
- SQN70.../SQN71...
- SQN74.../SQN75... |
| **Safety class** | - SQN70.../SQN71...
- SQN74.../SQN75...
- SQN70.../SQN71...
- SQN74.../SQN75... |
| **Cable entry** | - SQN70.../SQN71...
- SQN74.../SQN75... |
| **Type of locknut** | 1 x Pg9
M Pg9 DIN 46320 MS
1 x Pg11
M Pg11 DIN 46320 MS |
| **Ferrules** | Matching the dia. of the stranded wire |
| **Direction of rotation** | See Type summary |
| **Nominal and holding torque** | See Type summary |
| **Running times** | See Type summary |
| **Load changes with continuous rated load** | Typically 500,000 |
| **Weight (average)** | Approx. 500 g |
| **On time** | 60% max. 3 min. continuous operation |
| **Backlash between drive motor and drive shaft** | - As supplied
≤1.2° ±0.3°
- After 250,000 cycles
≤1.5° ±0.3° |
Technical data (cont'd)

End and auxiliary switches

<table>
<thead>
<tr>
<th>Number of end switches</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of auxiliary switches</td>
<td>See Type summary</td>
</tr>
<tr>
<td>Actuation</td>
<td>Via camshaft, color-coded cams (see Connection diagrams)</td>
</tr>
<tr>
<td>Switches with fine adjustment</td>
<td>- SQN70.../SQN71... : II and III</td>
</tr>
<tr>
<td></td>
<td>- SQN74.../SQN75... : III and IV</td>
</tr>
<tr>
<td>Breaking voltage</td>
<td>AC 24...250 V</td>
</tr>
</tbody>
</table>

Adjustment of cams
- Without fine adjustment: 1°
- With fine adjustment: Infinitely

Max. perm. amperage at cos φ = 0.9:
- (values in parentheses: short-time peaks for max. 0.5 s)
 - Connection diagram ①
 - Terminals 1, 2, 3, 4: 0.5 A
 - Terminals 5, 6, 7: 1 A (7 A)
 - Connection diagram ②
 - Terminals 1, 2, 6, 7: 0.5 A
 - Terminals 3, 4: 1 A (7 A)
 - Connection diagram ③
 - Terminals 1, 2, 3, 8, 11: 0.5 A
 - Terminals 4, 5, 7, 10: 1 A (7 A)
 - Connection diagram ④
 - Terminals 1, 1, 3, 8: 0.5 A
 - Terminals 4, 5: 3 A (14 A)
 - Terminals 6, 7: 1 A (7 A)
 - Connection diagram ⑤
 - Terminals 1, 2, 3, 8: 0.5 A
 - Terminals 4, 5: 2 A (14 A)
 - Terminals 6, 7: 1 A (7 A)
 - Connection diagram ⑥
 - Terminals 1, 2, 3, 4, 5: 0.5 A
 - Terminals 6, 7, 8: 1 A (7 A)
 - Connection diagram ⑦
 - Terminals 1, 2, 3, 4, 5, 8: 0.5 A
 - Terminals 6, 7: 1 A (7 A)
 - Connection diagram ⑧
 - Terminals 2...7: 0.5 A
 - Terminals 1, 8, 9: 1 A (7 A)
 - Connection diagram ⑨
 - Terminals 1, 2: 0.5 A
 - Terminals 3, 4, 5, 6, 7, 8: 1 A (7 A)
Environmental conditions

<table>
<thead>
<tr>
<th>Environmental conditions</th>
<th>Storage</th>
<th>DIN EN 60721-3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatic conditions</td>
<td>Class 1K3</td>
<td></td>
</tr>
<tr>
<td>Mechanical conditions</td>
<td>Class 1M2</td>
<td></td>
</tr>
<tr>
<td>Temperature range</td>
<td>-20...+60 °C</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td><95% r.h.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transport</th>
<th>DIN EN 60721-3-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatic conditions</td>
<td>Class 2K2</td>
</tr>
<tr>
<td>Mechanical conditions</td>
<td>Class 2M2</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-50...+60 °C</td>
</tr>
<tr>
<td>Humidity</td>
<td><95% r.h.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>DIN EN 60721-3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatic conditions</td>
<td>Class 3K5</td>
</tr>
<tr>
<td>Mechanical conditions</td>
<td>Class 3M2</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-20...+60 °C</td>
</tr>
<tr>
<td>Humidity</td>
<td><95% r.h.</td>
</tr>
</tbody>
</table>

Caution!
Condensation, formation of ice and ingress of water are not permitted!

Function

A synchronous motor drives the camshaft via a gear train. The camshaft actuates the end and auxiliary switches. Using the associated cam, the switching position of each end and auxiliary switch can be adjusted within the working range. Some of the actuator versions are equipped with electronic modules, which perform auxiliary functions in connection with the end and auxiliary switches, or with external devices, such as controllers (see Connection diagrams). The functions and technical data of both lines of actuators SQN70.../SQN71... and SQN74.../SQN75... are nearly identical.

Replacement of SQN30.../SQN31...:
The Type summary contains actuators type SQN3..., which can be replaced by SQN70.../SQN71... with the help of a mounting kit (see Ordering).

The SQN30... and SQN31... contained in the Type summary:
- See SQN7... AC 230 V versions
- are versions with no facility for fitting a potentiometer (see Data Sheet N7808)

Mechanical adaptations are not normally required.
To be noted are the different terminal assignments used with the 2 lines of actuators.
Connection diagrams

Note!
The following connection diagrams show the start position as supplied:
- End switch position II CLOSE
- Dead

No. 2 → LGB2... / LGB32... / LME22... / LME23... / LMG22...

2-stage or modulating operation → prepurging at nominal load position (NL)

Sequence diagram shows 2-stage operation
Connection diagrams (cont’d)

No. ④ → LOA24.../LOA25.../LOA26.../LOA28.../LOA36.../LMO24.../LMO44...

2-stage operation → prepurging at low-fire position (KL)

1) Without oil preheater
2) See Data Sheet N7118
3) LOA.../LMO... with oil preheater:
 If oil preheater’s readiness contact (OW) opens during operation, a new start will be made

*) Thermostat or similar unit with NO contact (1-wire control)

Required position is approached from only one side to eliminate switching differential (compensation of backlash)
Connection diagrams (cont’d)

No. 4 → LGB21.../LME21.../LMG21...

2-stage operation → prepurging at low-fire position (KL)

**) Only required with LGB21...

*) Thermostat or similar unit with NO contact (1-wire control)

1) Required position is approached from only one side to eliminate switching differential (compensation of backlash)
Connection diagrams (cont’d)

No. 6 → LME22…/LME23…/LGB22…/LGB32…/LMG22…

2-stage operation → prepurging at nominal load position (NL)

*) Thermostat or similar unit with NO contact (1-wire control)

I Red
II Blue
III Orange
IV Black
Connection diagrams (cont’d)

No. 6 → LFL.../LGK16.../LAL.../LOK16...

2-stage or modulating operation → prepurging at nominal load position (NL)

*) Thermostat or similar unit with changeover contact or 3-position controller for ON/OFF positioning pulses and neutral position

**) In the case of modulating operation, fuel valve (BV2) is replaced by a gas control valve (RV)

Program sequence diagram shows modulating operation.
2-stage operation → prepurging at low-fire position (KL)

1) See Data Sheets N7118 and N7130

*) Thermostat or similar unit with NO contact (1-wire control)

Program sequence without oil preheater

In the case of burner OFF, the air damper will stop at low-fire position (KL).
To be noted are the heat losses that normally occur during off times.
Connection diagrams (cont’d)

No. ⑩ → LFL…/LGK16…/LAL…/LOK16…

2-stage operation → prepurging at nominal load position (NL)

*) Thermostat or similar unit with NO contact (1-wire control)

I Red
II Blue
III Orange
IV Black
3-stage operation → prepurging at nominal load position (ST.3)

No. \(F \rightarrow \) LAL.../LFL...

Connection diagrams (cont’d)

1) Required position is approached from only one side to eliminate switching differential (compensation of backlash)

Diagram:
- LFL... / LAL...
- Stage 1...3
- C External auxiliary relay
- SQN75.2F6xxx
- Red, Blue, Orange, Yellow, Black, Green

Building Technologies Division CC1N7804en 13.05.2016
Connection diagrams (cont’d)

No. ☐ → Universal use

```
\[\text{SQN7x.x03xxx}\]
```

No. ☐ → Universal use

```
\[\text{SQN7x.xK4xxx}\]
```

Legend:

- I Red
- II Blue
- III Orange
- IV Black
2-stage operation → prepurging at nominal load position «NL»

1) TMO720 terminal no. 6
 TMG740 terminal no. 21

2) Cams of auxiliary switches III and IV rigidly connected
 I Red
 II Blue
 III Orange
 IV Orange
 V Black

- TMG.../TMO... are burner controls of other manufacture.
 The user must check with the supplier of the TMG.../TMO... the proposed combination with
 the actuator from a safety point of view and with regard to the type of burner control used.
 The user will assume full responsibility for this application.

- Connection diagram no. ① corresponds to connection diagram no. ③ of the SQN3...
Legend

No. 2 Number of internal diagram. Appears at the second position after the dot in the type reference
I/II End switches
III/IV/V Auxiliary switches
AL Remote indication of lockout (alarm)
BV1 Fuel valve stage 1
BV2 Fuel valve stage 2
BV3 Fuel valve stage 3
EK2 External remote reset button
ION Ionization probe
FS Flame signal
GL Gas / air ratio controller
GP Gas pressure switch
HS Main switch
KL Low-fire
L Live conductor
LK Air damper
LKP Air damper position
LP Air pressure switch
LR Load controller
M Burner or fan motor
M1 Actuator’s synchronous motor
M2 Without postpurge
N Neutral conductor
NL Nominal load
OH Oil preheater
OW Oil preheater’s readiness contact
QRB... Photoresistive flame detector
R Temperature or pressure controller
Relay
RV Control valve
SA Actuator
Si External primary fuse, as specified in the Data Sheet of the relevant burner control
SB Safety limiter
ST... Stage
t... / T... Program times (see Data Sheet of the relevant burner control)
TSA Safety time
Z Ignition transformer
CLOSE Damper fully closed
▲ Direction of rotation OPEN
▼ Direction of rotation CLOSE

Program sequence diagrams
A Burner ON
A – B Startup of burner
B – C Burner operation / load control operation (modulating or 2-stage)
C Burner OFF
C – D Overrun time
D End of program, burner control ready for new start
Dimensions

Dimensions in mm

SQN70.../SQN71...

1 x 3/8" adapter (Connector) for US and Canada

17
25

6.5

25

3
25

Drive shaft versions
Side view

Drife shaft versions
Cross-section

Drife shaft no.
(refer to "Type summary"

1) Housing length depending on the type of actuator (see Type summary)
2) Center groove: 6.3 mm deep
 Hole 5.1 mm dia.: 16.5 mm deep
 (incl. center groove depth)
3) Not included in supply
4) Supplied with actuators type SQN7x.xxxRxx
5) Groove does not serve for transmission of force

R Fixing positions matched to the SQN3...
 (for 1-to-1 replacement by SQN70.../SQN71...) requiring AGA70.3
M Through-hole 5.3 mm dia.
T Knockout hole 5.3 mm dia.

All drive shafts shown in end switch position II CLOSE as supplied.
Dimensions (cont’d)

Dimensions in mm

SQN74.../SQN75...

Drive shaft version
Side view

Drive shaft versions
Cross-section

Drive shaft no.
(refer to “Type summary”)

Drive shafts shown in CLOSE position (end switch II)

A Knockout hole for loose cable entry
R Through-hole 5.3 mm dia.
Fixing positions matched to Conectron LKS 160 and Berger STA
M Pg nuts (not included in supply; for type reference, see Technical data)

1) Not included in supply

©2016 Siemens AG Building Technologies Division, Berliner Ring 23, D-76437 Rastatt
Subject to change!